Iptakalim modulates ATP-sensitive K(+) channels in dopamine neurons from rat substantia nigra pars compacta.

نویسندگان

  • Jie Wu
  • Jun Hu
  • Yu-Ping Chen
  • Teruko Takeo
  • Sechiko Suga
  • Jamie Dechon
  • Qiang Liu
  • Ke-Chun Yang
  • Paul A St John
  • Gang Hu
  • Hai Wang
  • Makoto Wakui
چکیده

Iptakalim, a novel cardiovascular ATP-sensitive K(+) (K(ATP)) channel opener, exerts neuroprotective effects on dopaminergic (DA) neurons against metabolic stress-induced neurotoxicity, but the mechanisms are largely unknown. Here, we examined the effects of iptakalim on functional K(ATP) channels in the plasma membrane (pm) and mitochondrial membrane using patch-clamp and fluorescence-imaging techniques. In identified DA neurons acutely dissociated from rat substantia nigra pars compacta (SNc), both the mitochondrial metabolic inhibitor rotenone and the sulfonylurea receptor subtype (SUR) 1-selective K(ATP) channel opener (KCO) diazoxide induced neuronal hyperpolarization and abolished action potential firing, but the SUR2B-selective KCO cromakalim exerted little effect, suggesting that functional K(ATP) channels in rat SNc DA neurons are mainly composed of SUR1. Immunocytochemical staining showed a SUR1-rather than a SUR2B-positive reaction in most dissociated DA neurons. At concentrations between 3 and 300 microM, iptakalim failed to hyperpolarize DA neurons; however, 300 microM iptakalim increased neuronal firing. In addition, iptakalim restored DA neuronal firing during rotenone-induced hyperpolarization and suppressed rotenone-induced outward current, suggesting that high concentrations of iptakalim close neuronal K(ATP) channels. Furthermore, in human embryonic kidney 293 cells, iptakalim (300-500 microM) closed diazoxide-induced Kir6.2/SUR1 K(ATP) channels, which were heterologously expressed. In rhodamine-123-preloaded DA neurons, iptakalim neither depolarized mitochondrial membrane nor prevented rotenone-induced mitochondrial depolarization. These data indicate that iptakalim is not a K(ATP) channel opener in rat SNc DA neurons; instead, iptakalim is a pm-K(ATP) channel closer at high concentrations. These effects of iptakalim stimulate further pharmacological investigation and the development of possible therapeutic applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iptakalim protects against MPP+-induced degeneration of dopaminergic neurons in association with astrocyte activation.

Astrocyte activation observed in the MPTP mouse model and Parkinson's disease patients participates in the cascade of deleterious events that ultimately leads to death of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The present study aimed to elucidate whether inhibiting astrocyte activation was involved in the protective effects of iptakalim (Ipt), a novel ATP-sensitive p...

متن کامل

Functional expression of a large-conductance Ca2+-activated K+ channel in mouse substantia nigra pars compacta dopaminergic neurons.

The existence of large-conductance Ca(2+)-activated K(+) (BK) channels in substantia nigra pars compacta (SNc) has been a matter of debate. Using the patch-clamp technique in the inside-out configuration, we have recorded BK channel currents in SNc dopaminergic neurons. The channel has a conductance of 301 pS with a slight inward rectification and is both voltage- and calcium-dependent. Paxilli...

متن کامل

Expression and functional properties of TRPM2 channels in dopaminergic neurons of the substantia nigra of the rat.

Transient receptor potential melastatin 2 (TRPM2) channels are sensitive to oxidative stress, and their activation can lead to cell death. Although these channels have been extensively studied in expression systems, their role in the brain, particularly in the substantia nigra pars compacta (SNc), remains unknown. In this study, we assessed the expression and functional properties of TRPM2 chan...

متن کامل

Amphetamine-induced release of dopamine from the substantia nigra in vitro.

Incubation of chopped tissue from the substantia nigra of the rat brain with d-amphetamine resulted in a significant release of [3H]dopamine into the incubation medium. This effect was observed with both exogenous [3H]dopamine previously taken up by the tissue and [3H]dopamine endogenously synthesized from L-[3,5-3H]tyrosine. The observed release was greater in magnitude when the apparent conve...

متن کامل

An ultra-short dopamine pathway regulates basal ganglia output.

Substantia nigra pars reticulata (SNr) is a key basal ganglia output nucleus critical for movement control. Its GABA-containing projection neurons intermingle with nigral dopamine (DA) neuron dendrites. Here we show that SNr GABA neurons coexpress dopamine D(1) and D(5) receptor mRNAs and also mRNA for TRPC3 channels. Dopamine induced an inward current in these neurons and increased their firin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 319 1  شماره 

صفحات  -

تاریخ انتشار 2006